-
Pacemaker Rhythms - Course # 317-3
Introduction Part 1
- Rhythms are often named according to the source of the electrical activity in the heart or the structure where the problem is occurring.
- Pacemaker Rhythms are aptly named due to the locus of stimulation coming from an artificial impulse generator called a pacemaker.
- The most common pacemakers may deliver an electrical impulse to the right atrium, right ventricle or both.
- Artificial pacemakers are often implanted as a result of either a failure of the higher (faster) pacemakers within the heart or an irregular rhythm resulting in decreased cardiac output.
- Remember, the fastest electricity in the heart (regardless of location or source) will dictate the heart rate.
Introduction Part 2
- Each rhythm in this category will share unique a morphologic feature which separate them from all other rhythms.
- Pacemaker rhythms are identified by the presence of a conspicuous vertical mark known as a “spike”.
- If the spike precedes the P wave, it is referred to as an Atrial Pacemaker rhythm.
- If the spike precedes the ventricular depolarization, it is referred to as a Ventricular Pacemaker rhythm.
- If there is a spike prior to the P wave and the ventricular depolarization, it is referred to as an AV (atrioventricular sequential) Pacemaker rhythm.
Note: QRS complexes in Ventricular and Atrioventricular
Pacemaker rhythms will have a wide, bizarre appearance (just like
ventricular rhythms) and typically measure 0.12 seconds or greater.
- After learning the unique features just described, it is simply a matter of recalling the unique feature and associating it with the corresponding waveform.
Introduction Part 3
- During implantation, pacemakers are programmed by the physician to provide electrical impulses at a specific strength of impulse (enough to cause depolarization) and with a certain rate to maintain cardiac output within a specific normal range.
- Many pacemakers also are programmed to “sense” the inherent electrical activity occurring within the heart so the device only turns on when needed and does not compete with the patients own natural electrical activity.
- Sensing capability is an important safety feature in pacemakers to ensure the electrical impulse provided by the pacemaker does not inadvertently occur during the vulnerable period of repolarization (relative refractory period).
Introduction Part 4
- Unfortunately not all pacemakers work the way they should.
According to Pub Med, an article titled “Complications related to permanent pacemaker therapy” (http://www.ncbi.nlm.nih.gov/pubmed/10353129): In a group of patients studied at Kuopio University Hospital, inadequate capture or sensing was observed in 7.4% of the patients.
- A variety of problems can occur when is comes to pacemakers. The wire may not embed in the endocardium or pull out post-procedure, the device may oversense or undersense or fail to capture.
How to use this module.
This module is organized into a series of lessons. These lessons are listed on the right side of the content area. To navigate to a lesson, either
click on the lesson name or use the arrows at the bottom right. Each lesson contains several slides. These slides are lists with tabs
that appear above each slide. To navigate to a slide, either click on the tab or use the gray arrows that appear on the left and right sides of the slides.
Within the lesson are questions. These questions are used to reinforce key concepts, but they are not used for scoring or grading. After
completing this module, we encourage you to use our drills and quizzes to practice what you have learned. Finally, after completing most or all of
the modules, you might try our EKG Graded Quizzes to test your knowledge.
Our affiliated website, Practical Clinical Skills, provides additional drills and quizzes with certifcates of achievement. If you have an account, then your signin name and password will
work on that website as well. Click here for EKG contents and apps at Practical Clinical Skills.
317 Pacemaker Rhythms - Course # 317-3